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ABSTRACT

The coefficients are computed for the spherical
harmonic expansion of the potential of an oblate spheroid
whose density is an arbitrary function of equatorial radius.
The density is assumed constant on oblate spheroidal sur-
faces whose eccentricities are the same as that of the
given spheroid. The solution begins with the known potential
expansion of a homogeneous oblate spheroid and develops the
expansion valid for an arbitrary number of oblate spheroidal
layers of different densities surrounding an oblate spheroidal
core. By a limiting process, this expansion is extended to
the result just stated. A convergence criterion is obtained,
the result's significance is explained, and an extension to
the case of a mascon is made.
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INTRODUCTION AND SUMMARY

In potential theory it is sometimes of interest to
determine a mass distribution whose gravitational potential
in some sense [1l] provides a good representation of a given
potential function. A useful mass distribution for many
purposes is an oblate spheroid of equatorial radius a and
eccentricity e whose density p varies with equatorial radius
and is constant on surfaces of eccentricity e. With a, e,
and p suitably chosen, such a distribution should give a very
good representation of the earth's potential and a fairly
good representation of the moon's potential. Furthermore,
such a distribution can provide a convenient description of
mascons on either planet.

If the non-homogeneous oblate spheroidal mass dis-
tribution is to have any utility, an expression is required
for its external potential in its symmetry frame.* Such an
expression is provided in this paper. Starting from the known
expansion in spherical harmonics of the potential of a
homogeneous oblate spheroid [2], a formula is obtained for
the coefficients in the potential expansion for a body con-
sisting of homogeneous oblate spheroidal shells of different
densities sourrounding a homogeneous oblate spheroidal core.
The arrangement is such that all the oblate spheroidal
surfaces involved have the same eccentricity e, the same
equatorial plane, and a common symmetry axis. By itself,
such a layered spheroid is useful in modeling planetary
potentials. By a limiting process, this expansion is
converted to a form valid for an oblate spheroid of
eccentricity e whose density is a continuous function of
equatorial radius and is constant on oblate spheroidal
surfaces of eccentricity e. It is shown that all the poten-
tial expansions presented converge in the region r>ae, where
a is the equatorial radius of any of the figures. However,
these series represent a potential only at points external
to the body.

*In the symmetry frame, the x- and y- axes lie in the
equatorial plane and the 2z-axis coincides with the symmetry
axis of the spheroid.
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Formulas are provided for the masses of the bodies
discussed. However, since all the potential expansions are
normalized with respect to mass, a mass assignment may be made
in the potentials without the necessity of determining the
implied scaling factor in the density function.

An interesting mathematical observation is made
connecting the expansion coefficients derived for the
continuous-density, oblate spheroidal figure with the general
formula available from potential theory. It is seen that the
limiting procedure just described is equivalent to unlocking
a difficult double integral.

Because the shapes and mass distributions of the
figures under consideration are plausible and mathematically
simple candidates for mascons (or mass concentrations) which
exist on the earth and moon, a formula is given which expresses
the potentials of these figures when displaced from the origin.
The displacement is allowed to be arbitrary, but the figure's
symmetry axis is assumed to coincide with the radius vector
to the figure's center. In a geographic coordinate system,
for example, this formula may be used with one of the expansions
just discussed to obtain, by superposition, the total potential
of an oblate spheroidal earth with an oblate spheroidal mascon
inside.

The development, which is presented in a logical
sequence of simple steps, begins in the next section.

HOMOGENEOUS OBLATE SPHEROID

MacMillan [2] presents the potential function valid
at all points outside a homogeneous oblate spheroid and then
writes the expansion of this function in spherical harmonics.
The coordinate system in which the potential is written has
its x-y plane in the equatorial plane of the spheroid and its
z-axis coincident with the spheroid's symmetry axis. This
expansion, in a form suitable for geodesy and selenodsy, is

U GM IS a R
Spheroid(r’e’q’) = - hzo Dh T Ph(cose) (1)
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where
3(-)k/2eh/((h+1)(k+3)) (k= even)
D, = (2)

(k= odd).

In these equations a and e are the equatorial radius and eccen-
tricity of the oblate spheroid, and (r,6,¢) are the spherical
polar coordinates of the field point at which the potential is
computed. Notice that because of the symmetry of the spheroid
the longitude ¢ does not appear in the potential. Pk denotes

Legendre's polynomial, G the universal gravitational constant,
and M the spheroid's mass, which is related to the density p by

Wi

MSpheroid = me 1-e a . (3)

The potential coefficients (expansion coefficients)
Dk depend only on the eccentricity of the oblate spheroid, if

it is agreed to put the factor al2 in the potential formula (1).
Although this separation is arbitrary, it is common practice to

write the potential in terms of the factor (a/r)h. With one
exception, all the potentials written in this paper have the
form (1), and their expansion coefficients are proportional to
(2). The exception is the mascon's potential, which is not
referred to a frame of symmetry.

Although the function represented by (1) is valid only
for points outside a homogeneous oblate spheroid, (1) itself is
convergent for points satisfying r>ae, some of which lie inside
the spheroid. Thus one must be careful not to apply (1) to
points inside the spheroid nor to points outside the spheroid
for which r<ae. This is to say that (1) converges to the
potential of a homogeneous oblate spheroid at all points out-
side the spheroid for which r>ae.
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HOMOGENEQUS OBLATE SPHEROIDAL SHELL

The potential of a homogeneous oblate spheroidal
shell is the key to the development in this paper. The figure
under consideration is illustrated in Figure 1. The shell is
a homogeneous mass distribution of density Py bounded on the

outside by an oblate spheroidal surface of equatorial radius
a; and eccentricity e and bounded on the inside by an oblate
spheroidal surface of equatorial radius a, and the same
eccentricity e. The surface and the coordinate system possess
the symmetries illustrated.

For the purposes of potential theory, this shell may
be imagined to be a superposition of two homogeneous oblate
spheroids, the larger of positive mass and the smaller of
negative mass, and both of the same density. Thus the mass of
the shell illustrated may be found from

Mohe11 = Ma

4
3 o \[1-e (al3 - a,”) (4)

where (3) has been used. Likewise, the potential of the shell
may be found by summing

a; T peo k(r) R ’
and
GMa2 N a, klal k
Ua2 = — kgo Dk(-a_l) _i') P& (cos®), (6)

where (1) has been used.
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Remembering that M is negative, the resulting potential may
be shown to be a2

CMche1l ¢ . shell (21 ¢ P, (cose) (7)
UShell(r'e’¢) = T EO Cr (??} R ’
where
k+3 k+3
shell Pr 21 a) (8)
C [ ]
kR a R a 3 _ a 3
1 1 2
In the limit of a very thin shell, for which a, = a,-t,

where t is very small, then

2 2
Mone11 ~ 4mp12 E\l - e (9)

and

¢, .+ ko, . (10)

It may be observed that the coefficients for the thin shell
are larger by a factor (1 + k/3) than those of a homogeneous
oblate spheroid. If the two figures have the same size and
mass, which requires a much greater density in the shell, then
the shell's potential is correspondingly larger everywhere,
since the mass is all at the surface.

SPHEROID BOUNDED BY SPHEROIDAL SHELL

Suppose that in the previous section the cavity within
the shell is filled with a homogeneous distribution of mass at
density Poye The body obtained is illustrated in Figure 2. As

before, all surfaces involved have the same eccentricity e.

The potential of this composite body may be obtained
by superposing the contributions of the shell and the internal
spheroid., Referring to formulas (7) and (1), this means adding
the two potentials
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_ GMgpenn

a
Ushe11 = —7 — kz Cr E‘) P, (coss)

and

“Mspheroid = 22 ¢ 2 ¢
USpheroid = === hEO Dk‘EI) (—;) P, (cose).

r

The second formula has been arranged to display the equatorial
radius of the outermost surface. Performing the addition and
utilizing (3), (4) and (8) gives the result

fe
(2) a
2 GM 2 1
U( )(r,e,¢) = = kzo Ck( ) (7?) P, (coso) (11)
where
k+3 k+3 k+3
o (@ _ Peoraflay " may ) +eya ) (12)
k - k 3 3

3
a; eplay a,”) + ojya,

The superscripts in these equations are intended to indicate
that a nesting of two different homogeneous bodies is involved.
The total mass of the body is

YRR 1 [ol(al3 - a23) + 92323] . (13)

Wik

Notice that these formulas reduce to those just presented for
the case of a hollow homogeneous shell when Py = 0, and that

they reduce to the homogeneous spheroid formulas when Py = Pqe

SPHEROID BOUNDED BY (n-1) SPHEROIDAL SHELLS

The generalization of the formulas of the last section
to the case of (n-1) homogeneous oblate spheroidal shells sur-
rounding a homogeneous oblate spheroid is straightforward: _
There are n bodies, n densities, and n surfaces involved in this
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composite figure. The surfaces are all oblate spheroids of the
same eccentricity e, and they share a common equatorial plane

and a common symmetry axis. Working from the outside in, the
bodies are serially assigned integer names, beginning with "1" and
ending with "n". Thus the outer shell has density CEY and the

inner spheroid has density 0" The surfaces are numbered
likewise, so the outer surface has equatorial radius a, and the

inner surface a - By construction we have

. > .
al a1+l

for all i in the interval (1, n-1).

With these conventions in hand, the generalization of
the pervious formulas 1is

k
(n) © a
™ (r,8,4) = GMr lzZo Ck(n) ("rl‘) P (coso) (14)
where nil
k+3 : k+3 k+
o () _ D Ppp toi2y Pi(3y T %341 ) .
= — — (15)
kR a k 3 n-1 3 3
1 p_a + ) p.la;” - a, )
n n o1 101 i+l
The mass of the body is
-1
(n) _ 4 2 3, " 3 3
M = 3T\l - e [pnan * izl oy (ay aj+1 )] (16)

SPHEROID WITH DENSITY AS CONTINUOUS FUNCTION OF EQUATORIAL RADIUS

In this section the spherical harmonic expansion of
the potential of an oblate spheroid of continuously varying
density is obtained. The method is to take the limit of the
previous formulas as n tends to infinity and as the equatorial
radius of the inner spheroid tends to zero. By virtue of the
previous construction, the series obtained will be valid for a
density function which varies with equatorial radius within the
oblate spheroid and is constant on surfaces whose eccentricities
are the same as that of the surface of the given spheroid.
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Let the given oblate spheroid have equatorial radius
a, so that a; = a, and let its surface have eccentricity e.

Setting a = 0, let n»« in (14), (15) and (l16). Dropping
superscripts, the result is

o k
Ulr,0,¢) = %? kz Cp (%) P, (cose) (17)
=0
where a
5 f o (x) d(xt3)
c -2k % ,
k= E (3 ; (18)
a f p(x) d(x”)
0

in which the integration variable x is the equatorial radius
within the oblate spheroid. The spheroid's total mass is

M =

Wi

a
™\ f1 - e2 fo p (%) d(x3) . (19)

Equation (18) may be checked by setting p = constant, simulating
a homogeneous oblate spheroid. It may be verified that Ck = D,
in this case, as expected.

A very important point may be observed by comparing
(18) and (19). It is that the expansion coefficients C,2 are

automatically normalized with respect to mass. The significance
of this is that when writing the potential (17) a number may

be inserted for M without the need for scaling the density
function to make (19) yield that number. In effect, (18)
accounts for the scaling automatically. These remarks apply

to all the potentials and expansion coefficients writen in

this paper.

CONVERGENCE

None of the infinite series presented thus far is
usuable if the convergence of the series is not known. The
question of convergence of these series is simple to answer,
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provided it is realized that the potential of each configuration
considered is the sum of potentials of homogeneous oblate sphe-
roids (approximately half of which have negative mass). Hence,
for any of the given series to converge, it is only necessary
.that each of the constituent series converges., It follows from
remarks in the section on the homogeneous oblate spheroid that
the condition r>ae is sufficient for the convergence of each
constituent series, and therefore for the given series as well.

A second important question is that of representation:
under what conditions does one of the convergent series repre-
sent the actual potential of a body. Referring again to the
section about the homogeneous oblate spheroid and employing
an argument similar to the one just used, it is concluded that
when a series converges (r>ae) it represents the potential only
at points lying outside the body,

SIGNIFICANCE OF THE DEVELOPMENT

It can be shown [3] that the general spherical

harmonic expansion of the potential of an axially symmetric
body is

GM v a R
U(r,0,¢) = - kz Cp (;) Pk(cose) (20)
=0
where
_ 2w k+2
Ch = ;-k_M- ff d¢ d(cosa) p(&,a) & Pk(COSa). (21)
body

In this formula, which is written in a frame whose z-axis

coincides with the body's symmetry axis, (r,6,¢) are the spherical
polar coordinates of the field point, (§,a) are the radius to

and colatitude of a symmetric differential ring of mass, p(£,a)

is the density function, a is a size parameter to be specified,

and M is the total mass. Figure 3 illustrates the geometry for the
case of an oblate spheroid of eccentricity e, with the further
specialization that the x-y plane coincides with the equatorial
plane, The length parameter a is now taken as the equatorial
radius., Suppose it is desired to specify that the density
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p (E,0) be constant on oblate spheroidal shells of eccentricity e
and depend on equatorial radius only. Formula (21) is the
general rule for computing the potential coefficients for this
problem, yet it is not obivious how to perform the required
computation.

The significance of the development just completed is
that it sidesteps this problem and arrives at the coefficients
by a different route. Equating (18) and (21), and using (19),
the difficult double integral in (21) can be specialized to

ff dg d(cosa)p(a,a)§k+2 Pk(cosa)
“body (22)

a
=2 (1 + -g-') Dk‘\ll - e2 f x2 p (x) dx,
0

in which p(£,2) and p(x) represent the same density function.
It is interesting to observe in (22) that the coefficients
for a thin shell, (1 + k/3)Dk, show up multiplied by a factor

which accounts for the density variation from shell to shell,

NON-HOMOGENEQUS OBLATE SPHEROIDAL MASCON

The oblateness of the mass distributions that have
been discussed suggests a plausible shape for a mascon envi-
sioned as lying inside a planet with the mascon's symmetry
axis aligned with the planetographic vector R locating its
center. This configuration is shown in Figure 4,_in which
(R,eM,¢M) are the spherical polar coordinates of R. The

spherical harmonic expansion of the potential of an oblate
spheroid with this location and orientation is derived in
{4]. It is

au 7§

U(r,0,¢) = T R0 0
=0 m=

k
(%) Pkm(cose) [Ckm cos m¢ + shm sin m¢] (23)
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where
C k
km\ _ - (R=m) 1 k1
s |7 Zo Ce(278,0) BT TT{E=TT,
km -
(24)
cosmé¢
R k-2 m M
. (5 Pk (coseM) ’
sinm¢M

in which a is the mascon's equatorial radius, M its mass,
(r,9,¢) the field point in planetographic coordinates, and

th(cose) the unnormalized associated Legrendre polynomial
as defined in [3], [4]1, (5], or [6]. The coefficients CZ

depend on the mascon's equatorial radius, eccentricity, and
density function. If the mascon's density is assumed to be any
of the layered functions discussed herein, the corresponding
expansion coefficients may be used for CL' (Otherwise, the

general formula (21) must be used for CK‘) For these densities,

the series (23) converges to the potential function of the mascon
at all points which are outside the mascon and outside a sphere
of radius ae centered at the mascon's center. In addition, the
convergence of (23) dictates the general requirement r>a, which
is mentioned in [4].

Using superposition, the mascon potential (23) may be
added to a function (one of those just presented, for example)
representing the gross potential of a planet to obtain the
potential of a "lumpy" planet. This may be repeated until a
physically plausible mass distribution has been obtained for the
planet. By comparison with the known potential, the resulting
potential expansion may be used to determine the validity of
the assumed mass distribution or to adjust various assumed
parameters appearing in it. If it is desired to adjust para-
meters, the various masses should be taken as a parameter set
first, since the masses appear linearly in the composite

g L

2014-SLL-bsb S. L.’Levie, Jr.
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FIGURE 1 - HOMOGENEOUS OBLATE SPHEROIDAL SHELL.
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FIGURE 2 - HOMOGENEOUS OBLATE SPHEROID PLUS HOMOGENEOUS OBLATE
SPHEROIDAL SHELL.
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FIGURE 3 - NON-HOMOGENEOUS OBLATE SPHEROID SHOWING SYMMETRIC
DIFFERENTIAL RING.
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FIGURE 4 — NON—HOMOGENEOUS OBLATE SPHEROIDAL MASCON AT (R, 0, $p4)
IN PLANETOGRAPHIC FRAME. NOTE MASCON'S AXIAL SYMMETRY
WITH RESPECT TO R.




